насосы центробежные консольные

K 45/30, 1K8/18, 1K20/30

И АГРЕГАТЫ ЭЛЕКТРОНАСОСНЫЕ НА ИХ ОСНОВЕ

Руководство по эксплуатации Н49.948.00.00.000 РЭ

Введение	Лист 4
1. Описание и работа насоса (агрегата)	5
1.1 Назначение изделия	5
1.2 Технические характеристики	6
1.3 Состав изделия	7
1.4 Устройство и принцип работы	8
1.5 Маркировка и пломбирование	9
1.6 Упаковка	10
2. Подготовка насоса (агрегата) к использованию	11
2.1 Меры безопасности при подготовке насоса (агрегата) к работе	11
2.2 Подготовка к монтажу	12
2.3 Монтаж	12
2.4 Подготовка насоса (агрегата) к пуску	13
2.5 Пуск (опробование), регулирование и подготовка к работе	14
3. Использование насоса (агрегата)	15
3.1 Пуск насоса (агрегата)	15
3.2 Порядок контроля работоспособности насоса (агрегата)	15
3.3 Возможные неисправности и способы их устранения	16
3.4 Меры безопасности при работе насоса (агрегата)	18
3.5 Остановка насоса (агрегата)	19
4. Техническое обслуживание	20
4.1. Разборка и сборка насоса (агрегата)	20
5. Транспортирование и хранение	23

Рисунки

Рисунок 1 – Разрез насоса	24
Приложения	
Приложение А – Характеристика насоса К45/30	25
Характеристика насоса 1К8/18	25a
Характеристика насоса 1К20/30	256
Виброшумовые характеристики	26
Приложение Б – Габаритный чертеж насосов	27
Габаритный чертеж агрегатов электронасосных	28
Схема строповки насосов и агрегатов	30
Лист регистрации изменений	31

Руководство по эксплуатации (РЭ) предназначено для ознакомления обслуживающего персонала с конструкцией насосов и агрегатов и отдельных его узлов, а также с техническими характеристиками и правилами эксплуатации.

При ознакомлении с агрегатом следует дополнительно руководствоваться эксплуатационными документами на электрооборудование.

В связи с постоянным усовершенствованием выпускаемой продукции в конструкции отдельных деталей и насоса в целом могут быть внесены незначительные изменения, не отраженные в настоящем РЭ.

Обязательные требования к насосам (агрегатам), направленные на обеспечение их безопасности для жизнедеятельности, здоровья людей и охраны окружающей среды изложены в разделе 2.

К монтажу и эксплуатации насосов (агрегатов) должен допускаться только квалифицированный персонал, обладающий знанием и опытом по монтажу и обслуживанию насосного оборудования, ознакомленный с конструкцией насоса и настоящим РЭ.

1 ОПИСАНИЕ И РАБОТА НАСОСА (АГРЕГАТА)

1.1 Назначение изделия.

Насосы центробежные консольные K45/30, 1K8/18, 1K20/30 и агрегаты электронасосные на их основе (в дальнейшем агрегаты), предназначенные для перекачивания воды (кроме морской), а также других жидкостей, сходных с водой по плотности, вязкости, химической активности, с температурой от 263 до 358 К (от минус 10 до $+85^{\circ}$ C), pH=6...9, с содержанием твердых включений не более 1% по массе и размером не более 0,2 мм.

Насосы (агрегаты) предназначены для замены и ремонта аналогичных насосов (агрегатов) выпускаемых ранее и другими предприятиями.

Насосы (агрегаты) относятся к изделиям вида 1 (восстанавливаемые) по ГОСТ 27.003-90 и выпускаются в климатическом исполнении УЗ.1 по ГОСТ 15150-69.

Насосы (агрегаты) НЕ ПРЕДНАЗНАЧЕНЫ для эксплуатации во взрывоопасных и пожароопасных помещениях.

Условное обозначение насоса (агрегата) при заказе, переписке и в технической документации должно быть:

Насос (агрегат) К45/30 УЗ.1 ТУ 3631-226-05747979-2003

где К – консольный;

45 -подача, м $^{3}/$ ч;

30 – напор, м;

У3.1 – климатическое исполнение и категория размещения.

или

Насос (агрегат) 1К8/18 У3.1 ТУ 3631-226-05747979-2003 где 1- модернизация.

При поставке насоса с одним из вариантов рабочих колес по внешнему диаметру, добавляется индекс:

«м» – увеличенный диаметр;

«а», «б» – уменьшенный диаметр.

Насосы центробежные консольные и агрегаты электронасосные на их основе должны соответствовать требованиям ГОСТ P52743-2007

- 1.2 Технические характеристики.
- 1.2.1 Основные параметры и показатели качества насосов (агрегатов) приведены в таблице 1.
- 1.2.2 Насос (агрегат) должен эксплуатироваться в рабочем интервале подач. Эксплуатация насоса (агрегата) за пределами рабочего интервала не рекомендуется из-за снижения энергетических показателей и показателей надежности.

Характеристики насосов (агрегатов) приведены в приложении A (в том числе гарантируемые шумовые и вибрационные характеристики).

Таблица 1

- 3. 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
Have toward warming warming	Типоразмер насосов (агрегатов)							
Наименование показателя	1K8/18	1K20/30	K45/30					
Подача, M^3/Ψ (л/с)	8 (2,2)	20 (5,6)	45 (12,5)					
Напор, м	18	30	32					
Давление на входе, МПа (кгс/см ²),								
не более		0,25 (2,5)						
Частота вращения, с ⁻¹ (об/мин)		48 (2900)						
Допускаемый кавитационный запас, м,	2	Q	4.0					
не более	3,8 4,0							
Утечка через сальниковое уплотнение,	$0,3\cdot10^{-3}\dots1,5\cdot10^{-3}\ (0,3\dots1,5)$							
M^3/H (Π/H)	0,3·101,3·10 (0,31,3)							
КПД насоса	0,53	0,64	0,72					
Максимальная мощность насоса, кВт	1,2	3,5	6,5					
Параметры энергопитания:								
род тока	переменный							
напряжение, В	220; 380							
частота тока, Гц	50							
Масса насосов и агрегатов, габаритные	Vrance	аны в приложе	пии Б					
размеры насосов и агрегатов	3 Kasa	пны в приложе	пии D					
1 1 1								

Примечания

- 1.3 начения основных параметров указаны при работе насосов на воде с температурой 293 К (20° С) и плотностью 1000 кг/м^3 .
- 2.Производственное допустимое отклонение напора +7%...минус 5%, при эксплуатации отклонение напора минус 10%.
- 3. КПД указан для оптимального режима в рабочем интервале характеристики. Для насосов с уменьшенными диаметрами рабочих колес допускается снижение КПД для варианта «а» на 0,05, «б» на 0,08.
- 4. Максимальная мощность насоса величина справочная и указана для максимальной подачи в рабочем интервале характеристики с учетом допустимых отклонений по напору и КПД.
- 5.Отклонение по массе +5%.

- 1.3 Состав изделия.
- 1.3.1 В комплект поставки насоса входят:
- соединительная муфта;
- паспорт H49.948.01.00.000 ПС;
- руководство по эксплуатации Н49.948.00.00.000 РЭ;
- *Рама;
- *кожух защитный (ограждение).
- 1.3.2 В комплект поставки агрегата входят:
- насос в соответствии с п.1.3.1 на раме в сборе с электродвигателем (согласно приложению Б);
 - паспорт (Н49.948.00.00.000 ПС);
 - эксплуатационная документация на электродвигатель;
 - *комплект монтажных частей;
 - -руководство по эксплуатации (Н49.948.00.00.000 РЭ).

Примечания

- 1. По заказу потребителя агрегат может комплектоваться преобразователем частоты переменного тока на соответствующую мощность.
- 2. Агрегат может комплектоваться другими двигателями, не указанными в приложении Б.
- 3. Электродвигатели должны соответствовать требованиям ГОСТ Р МЭК 60204-1-2007, раздел 14.

^{*}Поставка производится по требованию заказчика и за отдельную плату.

- 1.4 Устройство и принцип работы.
- 1.4.1.Насосы К45/30, 1К8/18, 1К20/30 центробежные, горизонтальные, консольные, с сальниковым уплотнением вала.
- 1.4.2. Корпус насоса представляет собой чугунную отливку, внутренняя полость которой выполнена в виде спирального отвода, переходящего в напорный патрубок. Корпус насоса крепится к фланцу опорного кронштейна.
- 1.4.3.Входной патрубок выполнен в крышке корпуса на оси вращения (горизонтально).
- 1.4.4. Напорный патрубок боковой выполнен в корпусе в одной плоскости с осью вращения (вертикально). В зависимости от условий монтажа и эксплуатации напорный патрубок можно повернуть на 90°, 180° или 270°.
- 1.4.5.Рабочее колесо одностороннего входа, закрытого типа. Подвод жидкости к рабочему колесу осевой
- 1.4.6. Ротор насоса приводится во вращение электродвигателем через соединительную муфту. Опорами ротора служат два радиальных шарикоподшипника, которые установлены в кронштейне. Подшипники смазываются консистентной смазкой Литол 24 ГОСТ 21150-87.
- 1.4.7. Направление вращения ротора против часовой стрелки, если смотреть со стороны привода.
- 1.4.8.В верхней части корпуса имеется отверстие, закрытое пробкой, для выпуска воздуха при заполнении насоса и всасывающей линии перекачиваемой жидкостью
- 1.4.9.В нижней части корпуса насоса имеется отверстие, закрытое пробкой, для слива остатков жидкости при остановке насоса на длительное время. В кронштейне имеется отверстие, предназначенное для отвода утечки жидкости через сальник.
 - 1.4.10. Присоединительные размеры фланцев по ГОСТ 12815-80.

- 1.5 Маркировка и пломбирование.
- 1.5.1 На каждом насосе на кронштейне установлена табличка по ГОСТ 12971-67, на которой приведены следующие данные:
 - наименование или товарный знак завода изготовителя;
 - знак обращения на рынке;
 - обозначение насоса (агрегата);
 - подача, $M^3/4$;
 - напор, м;
 - допускаемый кавитационный запас, м;
 - частота вращения, об/мин;
 - год выпуска;
 - масса насоса (агрегата),кг;
 - обозначение технических условий;
 - клеймо ОТК;
 - номер насоса по системе нумерации завода-изготовителя;
 - максимальная потребляемая мощность, кВт;
 - страна-изготовитель.
- 1.5.2 Направление вращения ротора должно быть обозначено стрелкой, окрашенной в красный цвет.
- 1.5.3 Покрытие наружных поверхностей, кроме обработанных фланцев, эмаль ПФ-115 синяя ГОСТ 6465-76.
- 1.5.4 Перед упаковкой наружные и внутренние неокрашенные поверхности насоса должны быть законсервированы согласно принятой на заводе-изготовителе технологии, разработанной в соответствии с ГОСТ 9.014-78, группа изделий II-2. Вариант защиты насоса В3-1, вариант внутренней упаковки ВУ-9 ГОСТ 9.014-78.

- 1.5.5 Категория упаковки КУ-0 по ГОСТ 23170-78.
- 1.5.6 После консервации насоса патрубки закрываются заглушками и пломбируются консервационными пломбами (пятно зеленой краски). Разъем корпуса и крышки пломбируется гарантийными пломбами. Резьбовые отверстия закрываются пробками заглушками. Расположение пломб указано в приложении Б.
- 1.5.7 Срок действия консервации 2 года, при условии хранения по группе 4 (Ж2) ГОСТ 15150-69.

При хранении свыше 2-х лет следует производить периодический контроль за состоянием консервации и, при необходимости, производить переконсервацию. Переконсервацию производить консервационным маслом К-17 ГОСТ 10877-76.

Метод консервации обеспечивает расконсервацию без разборки.

- 1.6 Упаковка.
- 1.6.1 Насос (агрегат) транспортируется без тары на деревянных салазках.
- 1.6.2 Эксплуатационная документация должна быть вложена в водонепроницаемый пакет и привязана к кронштейну насоса.

Допускается укладывать эксплуатационную документацию в клеммную коробку электродвигателя.

1.6.3 Транспортная маркировка груза производится согласно ГОСТ14192-96 и указаниям в чертежах.

2 ПОДГОТОВКА НАСОСА (АГРЕГАТА) К ИСПОЛЬЗОВАНИЮ.

- 2.1 Меры безопасности при подготовке насоса (агрегата) к работе.
- 2.1.1 Насос (агрегат) при транспортировании, погрузке и разгрузке должен перемещаться в соответствии с ГОСТ 12.3.020-80.
- 2.1.2 ЗАПРЕЩАЕТСЯ ПОДНИМАТЬ НАСОС (АГРЕГАТ) ЗА МЕСТА, НЕ ПРЕДУСМОТРЕННЫЕ СХЕМОЙ СТРОПОВКИ.
- 2.1.3.Насос (агрегат) должен соответствовать требованиям безопасности по ГОСТ 12.2.003-91 и общим эргономическим требованиям по ГОСТ 12.2.049-80.
- 2.1.4 К монтажу и эксплуатации насосов (агрегатов) допускаются только квалифицированные механики и слесари, знающие конструкцию насосов, обладающие определенным опытом по эксплуатации, обслуживанию и ремонту насосов и ознакомленные с настоящим РЭ.

Вращающаяся соединительная муфта должна быть ограждена кожухом, в соответствии с ГОСТ 12.2.062-81 муфта и кожух окрашены в желтый цвет.

- 2.1.5 Место установки агрегата должно удовлетворять следующим требованиям:
- обеспечить свободный доступ к агрегату при эксплуатации, также возможность разборки и сборки;
- масса фундамента должна не менее, чем в четыре раза превышать массу агрегата;
- 2.1.6 Насосы и агрегаты должны соответствовать требованиям ГОСТ Р52743-2007. При испытаниях и эксплуатации насосов и агрегатов должны быть также учтены требования ГОСТ Р52743-2007. При эксплуатации агрегатов необходимо соблюдать «Правила эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок».

- 2.1.7 При монтаже и эксплуатации агрегата сопротивление изоляции измеренное мегомметром на 500В между проводами силовой цепи и цепи защиты не должно быть менее 1 МОм.
 - 2.2 Подготовка к монтажу.
- 2.2.1 После доставки насоса (агрегата) на место установки, необходимо освободить его от упаковки, убедиться в сохранности пломб и заглушек на всасывающем и напорном патрубках и на разъеме корпуса насоса, проверить наличие технической документации.
- 2.2.2. Снять с наружных поверхностей насоса консервирующую смазку и протереть их ветошью, смоченной в керосине или уайт спирите.
 - 2.2.3. Расконсервация проточной части насоса не производится.
- 2.2.4 При агрегатировании насосов 1К8/18 и 1К20/30 проставку устанавливать на вал двигателя перед установкой полумуфты двигателя.
 - 2.3. Монтаж.
- 2.3.1. Установить насос (агрегат) на фундаменте, выверить его в горизонтальной плоскости по уровню.
 - 2.3.2. Присоединить напорный и всасывающий трубопроводы.

ЗАПРЕЩАЕТСЯ ИСПРАВЛЯТЬ ПЕРЕКОС ФЛАНЦЕВ ПОДТЯЖКОЙ БОЛТОВ ИЛИ ПУТЕМ ПОСТАНОВКИ КОСЫХ ПРОКЛАДОК.

2.3.3 Провести центрирование валов насоса и двигателя, регулируя положение двигателя.

2.3.4 Проверку радиального смещения осей насоса и двигателя производить приспособлением с установленным на нем индикатором, цена деления которого не более 0,01 мм методом кругового вращения.

Максимальная величина несоосности определяется величиной разности 2^{x} показаний индикатора, деленной на 2. Эта величина не должна превышать 0.12 мм.

ПРИ АГРЕГАТИРОВАНИИ НАСОСА И ПРИВОДА ЗАКАЗЧИКОМ НЕ-ОБХОДИМО СОБЛЮДАТЬ ТРЕБОВАНИЯ п.п.2.3.3, 2.3.4 НАСТОЯЩЕГО РЭ. ОТВЕТСТВЕННОСТЬ ЗА ГАРАНТИИ И КАЧЕСТВО АГРЕГАТА В ДАННОМ СЛУЧАЕ НЕСЕТ ЗАКАЗЧИК.

2.4 Подготовка насоса (агрегата) к пуску.

Перед пуском насоса (агрегата) в работу необходимо:

- подготовить двигатель к пуску согласно инструкции по его обслуживанию и эксплуатации;
 - добавить в подшипники смазку Литол 24 ГОСТ21150-80;
- подтянуть слегка и равномерно сальники при необходимости (вал насоса должен проворачиваться вручную без заеданий, между корпусом насоса и фланцем крышки сальника должен быть зазор не менее 8...10 мм);
- закрыть задвижку на нагнетании, а также краны манометра и мановакуумметра, открыть задвижку на всасывании;
- проверить направление вращения электродвигателя пробным пуском, залив предварительно насос и всасывающую линию перекачиваемой жидкостью.

- 2.5 Пуск (опробование), регулирование и подготовка к работе.
- 2.5.1 Залить насос и всасывающий трубопровод жидкостью, подключив систему вакууммирования к резьбовому отверстию в верхней части корпуса. Если насос работает с подпором, то достаточно открыть задвижку на всасывающей линии. При этом необходимо спустить воздух через пробку в верхней части корпуса.
- 2.5.2 КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ПУСК В РАБОТУ НЕЗАЛИТОГО ПЕРЕКАЧИВАЕМОЙ ЖИДКОСТЬЮ НАСОСА (АГРЕГАТА).
- 2.5.3 Включить двигатель и дать ему возможность набрать необходимую частоту вращения. Открыть краны у манометра и мановакуумметра..
- 2.5.4 Открыть постепенно задвижку на нагнетании до получения требуемого напора.
- 2.5.5 Отрегулировать работу сальника. Сальник не должен греться и, тем более, дымить. Сальник работает нормально, если через него просачивается перекачиваемая жидкость в количестве $0.3 \cdot 10^{-3} \dots 1.5 \cdot 10^{-3}$ м 3 /ч $(0.3 \dots 1.5 \dots 1$

3 ИСПОЛЬЗОВАНИЕ НАСОСА (АГРЕГАТА)

- 3.1 Пуск насоса (агрегата).
- 3.1.1 Запуск агрегата в работу производить в следующем порядке:
- внимательно осмотреть насос и электродвигатель. В случае запуска насоса после длительной стоянки провернуть вручную вал насоса и убедиться в отсутствии помех вращению вала;
 - убедиться в наличии смазки в подшипниках;
- закрыть задвижку на нагнетании; а также краны манометра и мановакуумметра, открыть задвижку на всасывании;
 - заполнить насос перекачиваемой жидкостью;
 - включить электродвигатель;
 - открыть краны у манометра и мановакуумметра;
- открыть постепенно задвижку на нагнетании до получения требуемого напора.
- 3.1.2 КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ЭКСПЛУАТАЦИЯ НАСОСА (АГРЕГАТА) ЗА ПРЕДЕЛАМИ РАБОЧЕГО ИНТЕРВАЛА.
 - 3.2 Порядок контроля работоспособности насоса (агрегата).
 - 3.2.1 Периодически (не реже одного раза в сутки) следить за:
 - показаниями приборов;
 - герметичностью соединений;
 - утечками через сальниковое уплотнение;
 - нагревом подшипниковых и сальниковых узлов.

Резкие колебания стрелок приборов, а также повышенный шум и вибрация характеризуют ненормальную работу агрегата. В этом случае необходимо остановить агрегат и устранить неисправности.

- 3.3 Возможные неисправности и способы их устранения.
- 3.3.1 Возможные неисправности в насосе, признаки, причины и способы их устранения изложены в таблице 4.

Таблица 4.

Наименование неисправности, внешнее проявление и дополнительные признаки	Вероятная причина	Способ устранения
1. Насос не обеспечивает требуемых параметров. а) Давление при закрытой	1. Обратное вращение	1. Переключить фазы.
задвижке на нагнетании меньше, чем по характеристике.	вала. 2. Насос не полностью залит перекачиваемой жидкостью.	2. Залить насос и трубо- провод водой.
	3. Низкая частота вра- щения.	3. Отрегулировать параметры энергопитания.
б) Мановакуумметр показывает разрежение выше требуемого.	1. Загрязнение фильтра. 2. Повышенная подача.	1. Прочистить фильтр. 2. Снизить подачу, уменьшив открытие за-
	3. Прикрыта задвижка на всасывании.	движки на нагнетании 3. Полностью открыть задвижку на всасывании.
в) Колебания стрелок манометра и мановакуумметра.	1. Попадание воздуха в насос, через неплотности подводящего трубопровода.	1. Проверить затяжку фланцев и цельность уплотнительных прокладок.
г) Завышена потребляемая мощность.	 Повышенная подача. Износ щелевого уп- 	1. Отрегулировать задвижкой на выходе. 2. Заменить крышку
	лотнения рабочего колеса.	корпуса и рабочее колесо.
	3. Износ сальниковой набивки и защитной	3. Заменить сальниковую набивку и защитную
	втулки 4. Нарушена соосность валов насоса и двигате-	втулку 4. Произвести центрирование валов
	ля 5. Износ подшипников	5. Заменить подшипники

Продолжение таблицы 4.

Наименование неисправности, внешнее проявление и дополнительные признаки	Вероятная причина	Способ устранения
2 Повышенные протечки свыше $0,3\cdot10^{-3}\dots1,5\cdot10^{-3}$ м ³ /ч $(0,3\dots1,5$ л/ч) через сальниковое уплотнение. При поджатии крышкой сальник перегревается («дымит»)	1 Износ сальниковой набивки и защитной втулки	1 Заменить набивку и защитную втулку
3. Повышенная вибрация, нагрев подшипников	1 Нарушена соосность валов насоса и двигателя. 2 Недостаточная жесткость крепления насоса и двигателя 3 Механические повреждения в насосе, задевание вращающихся деталей о неподвижные, износ подшипников.	1 Произвести центрирование валов 2 Провести подтяжку крепежа насоса, двигателя и трубопроводов 3 Устранить механические повреждения
4. Нагрев подшипников	1. Некачественная смазка, избыток или недостаток смазки. 2. Износ подшипников.	1 Заменить смазку 2.Заменить подшипники

- 3.4 Меры безопасности при работе насоса (агрегата).
- 3.4.1 Обслуживание агрегатов периодическое, не требует постоянного присутствия обслуживающего персонала.
- 3.4.2 Запуск насоса производится только при заполненных водой внутренней полости насоса и всасывающей линии.
- 3.4.3 Работа насоса при закрытой задвижке на нагнетании допускается не более 5 минут.
- 3.4.4 На конце всасывающего трубопровода должен быть установлен приемный клапан с сеткой. Во избежании проникновения воздуха в насос приемный клапан необходимо расположить ниже уровня жидкости не менее чем на 0,5 м.

НЕ ДОПУСКАЕТСЯ РАБОТА НАСОСА БЕЗ ОБРАТНОГО КЛАПАНА ИЛИ ЗАДВИЖКИ НА ЛИНИИ НАГНЕТАНИЯ.

- 3.4.5 При работающем агрегате ЗАПРЕЩАЕТСЯ:
- ПРОИЗВОДИТЬ РЕМОНТ;
- ПОДТЯГИВАТЬ БОЛТЫ, ВИНТЫ И ГАЙКИ;
- ПОДТЯГИВАТЬ САЛЬНИКОВОЕ УПЛОТНЕНИЕ.
- 3.4.6 При работающем агрегате необходимо остерегаться случайного соприкосновения с вращающимися и нагретыми свыше 323 К (50° С) частями оборудования.

- 3.5 Остановка насоса (агрегата).
- 3.5.1 Порядок остановки агрегата:
- закрыть задвижку на напорном трубопроводе, переводя насос на холостой ход;
 - закрыть задвижку на всасывании;
 - закрыть кран у мановакуумметра;
 - выключить двигатель;
 - закрыть кран у манометра.
- 3.5.2 При остановке на длительное время, во избежание коррозии, жидкость из насоса и патрубков слить через сливные пробки и законсервировать насос согласно п.1.5.4 настоящего РЭ.
- 3.5.3 Насос и трубопровод при стоянке не должны оставаться заполненными водой, если температура в помещении ниже 274 К (+1° С), иначе замерзшая жидкость разрушит их.
- 3.5.4. Аварийная остановка насоса (агрегата) при необходимости, осуществляется нажатием кнопки «СТОП» цепи управления электродвигателя с последующим выполнением операций указанных в п.3.5.1.

4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание насоса проводится только при его использовании. При этом необходимо:

- следить, чтобы температура подшипников не превышала температуру помещения более, чем на 50°С и была не выше 343 К (70°С), для чего в кронштейне предусмотрены резьбовые отверстия М8х1-7Н. Рекомендуемые приборы реле температуры РТ 303-1 5Д4.542.001 ТУ или РТК 303 ТУ1145-004-045972137-99.
 - поддерживать необходимое количество смазки в подшипниках;
- освобождать от смазки, промывать и заполнять свежей смазкой стаканы подшипников и подшипники в течение первого месяца работы через 100 часов, а в последующее время через 1000 часов работы насоса;
- следить за протечками, периодически подтягивать сальник так, чтобы жидкость из него просачивалась в пределах 0,3...1,5 л/ч, если протечки отсутствуют, ослабить затяжку сальника, а в случае износа набивки заменить ее новой.

4.1 Разборка и сборка насоса(агрегата).

При разборке насоса следует следить за состоянием посадочных и уплотнительных поверхностей и оберегать их от забоин, царапин и других повреждений.

При разборке необходимо помечать взаимное положение деталей, ЗАПРЕЩАЕТСЯ МЕНЯТЬ ДЕТАЛИ МЕСТАМИ.

Для замены вышедших из строя рабочего колеса, подшипников необходимо разобрать насос (рисунок 1) в следующей последовательности:

- отсоединить от насоса подводящий и отводящий трубопроводы;
- снять защитный кожух муфты;
- разъединить муфту, вынув резиновые пальцы или звездочку;

- снять кожух и полумуфту;
 - снять насос с фундаментной плиты;
 - снять крышку 1 с корпуса 5, используя отжимные винты;
 - отвернуть обтекатель 3, крепящий рабочее колесо 4 на валу 14;
 - отвернув гайки 9 снять крышку сальника 7;
 - снять рабочее колесо;
- используя отжимные винты, снять корпус 5 с кронштейна 12 и удалить кольца сальниковой набивки 6;
- снять с вала (при необходимости) втулку защитную 8 и отбойное кольцо 10
 - снять крышку подшипника 16;
 - вынуть вал 14 с подшипниками13, 15 из кронштейна;
 - снять крышку подшипника 11;
 - снять подшипники 13,15 с вала 14.

Сборку производить в следующей последовательности:

- напрессовать на вал подшипники;
- установить в кронштейн крышку подшипника 11;
- установить вал с подшипниками в кронштейн до упора в крышку подшипника 11;
 - установить крышку подшипника 16;
- подбором прокладок под крышкой подшипника 16 отрегулировать осевой люфт до появления сопротивления вращению вала вручную;
 - установить на вал отбойное кольцо и втулку защитную;
 - разместить на вал крышку сальника 7;
 - установить в расточку корпуса 5 сальниковую набивку;
 - установить корпус 5 на кронштейне с валом, закрепить гайками;
- установить рабочее колесо на вал, закрепить обтекателем, зафиксировать стопорной шайбой;

- установить на крышке корпуса уплотнительную прокладку2;
- соединить крышку корпуса с корпусом 5, затянуть гайки;
- установить крышку сальника 7 и завернуть гайки 9.

5 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 5.1 Насосы (агрегаты) могут транспортироваться любым видом транспорта при соблюдении правил перевозки для каждого вида транспорта.
- 5.2 Насосы (агрегаты) транспортируются на деревянных салазках, принятых на заводе-изготовителе.
- 5.3 Условия транспортирования агрегата(насоса) в части воздействия климатических факторов 4(Ж2) ГОСТ 15150-69, в части воздействия механических факторов –С по ГОСТ 23170-78.
 - 5.4 Транспортная маркировка груза производится в соответствии с ГОСТ 14192-96.
 - 5.5 Срок хранения 2 года в условиях 4(Ж2) ГОСТ 15150-69.
- 5.6 При хранении насоса (агрегата) свыше 2-х лет (по истечении срока действия консервации) следует произвести анализ состояния консервации и, при необходимости, произвести переконсервацию в соответствии с ГОСТ 9.014-78.
- 5.7 Строповка насоса и агрегата должна осуществляться согласно схеме приведенной в приложении Б.

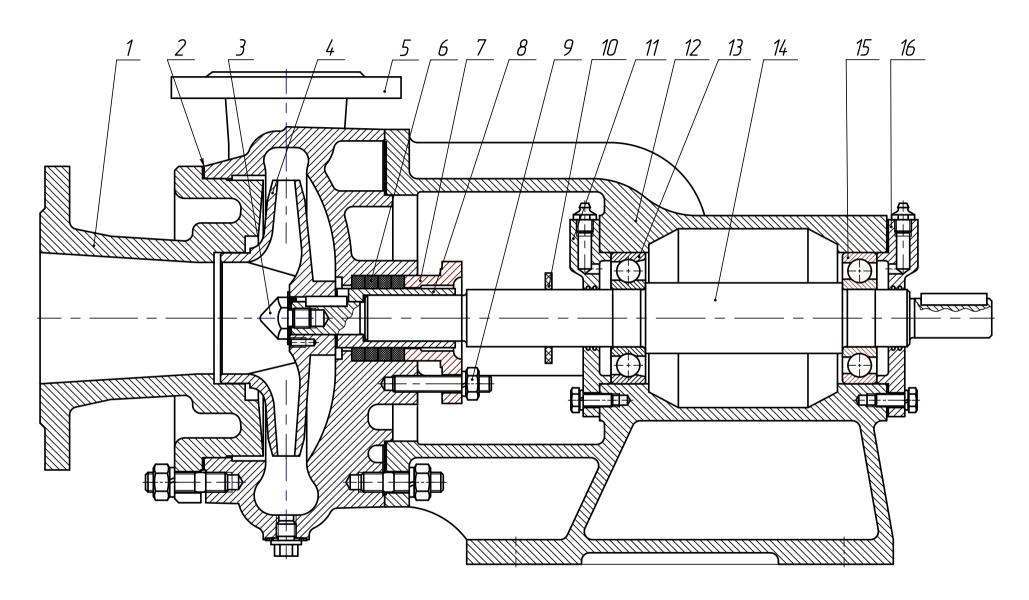
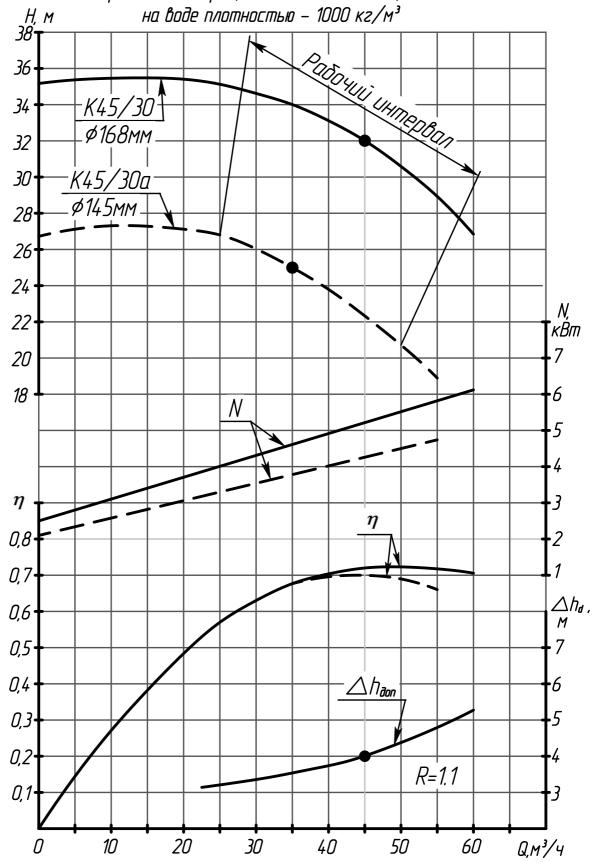
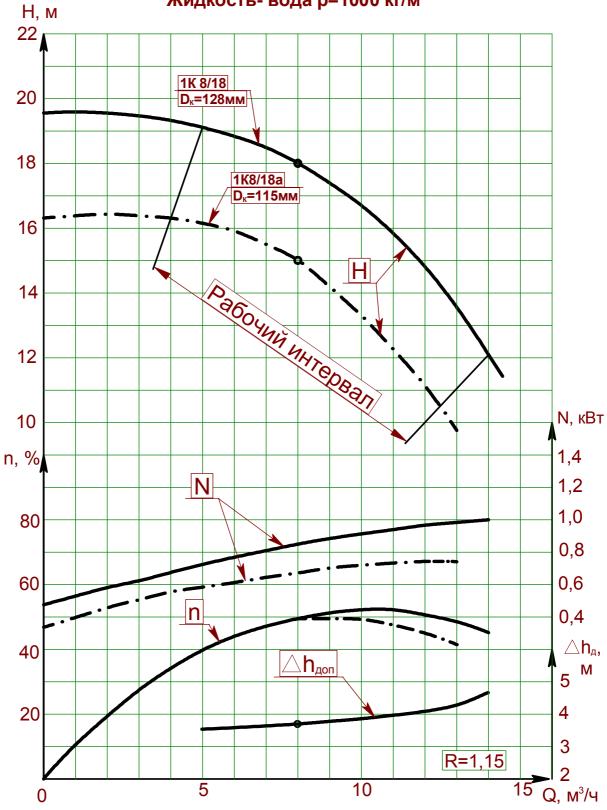
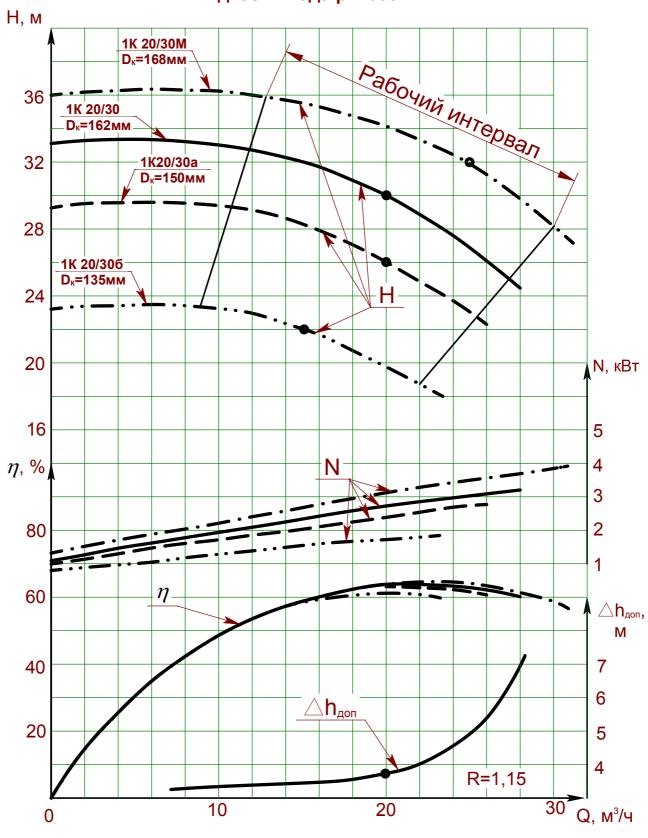



Рисунок 1 – Разрез насоса

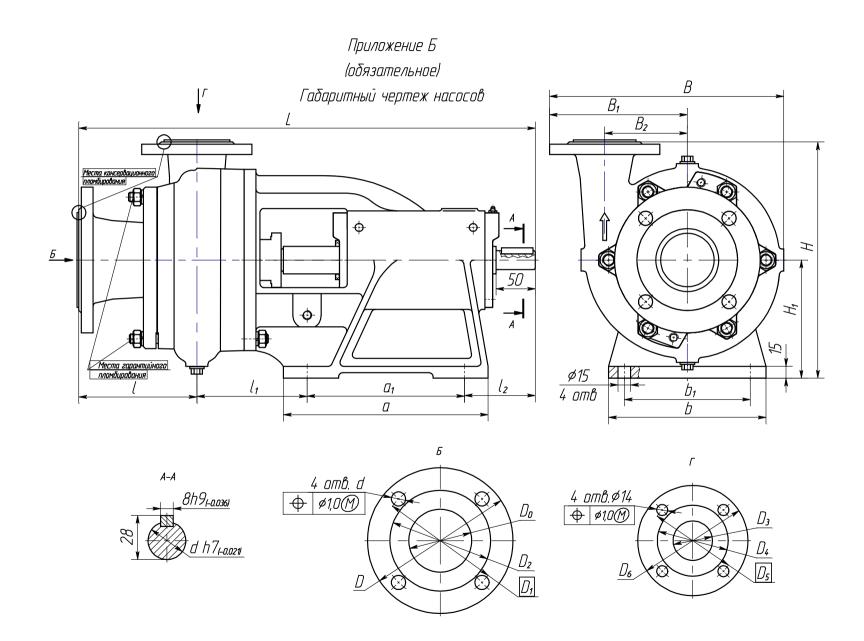

Приложение А (справочное)

Характеристика насоса K45/30 при частоте вращения – 48c⁻¹(2900 оδ/мин)


Продолжение приложения А

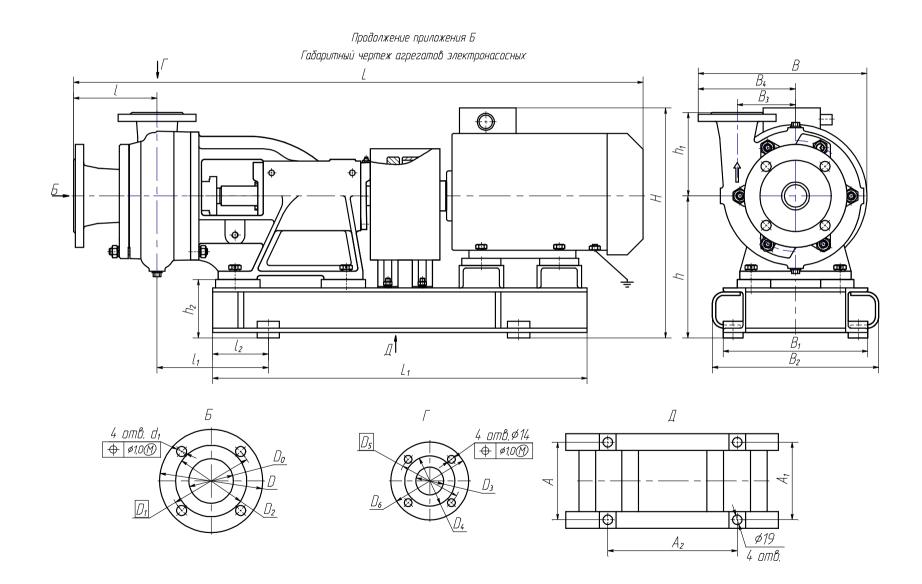
Характеристика насоса 1К 8/18 при частоте вращения-48с⁻¹(2900 об/мин) Жидкость- вода p=1000 кг/м³

Продолжение приложения А


Характеристика насоса 1К20/30 при частоте вращения-48с⁻¹ (2900 об/мин) Жидкость-вода р=1000 кг/м³

Продолжение приложения A ВИБРОШУМОВЫЕ ХАРАКТЕРИСТИКИ

Обозначение	Уровень звука, дБА, на	Средние квадратические значения
типоразмера	расстоянии 1м от наруж-	виброскорости, мм/с (логарифмиче-
агрегата	ного контура агрегата,	ские уровни виброскорости, дБ) в
	не более	диапазоне от 8 до 63 Гц, в местах
		крепления агрегатов к фундаменту,
		не более
1K8/18*	79	1,58 (90)
1K20/30*	79	1,58 (90)
K45/30	79	1,58 (90)


^{*}Виброшумовые характеристики уточняются при испытаниях первых пяти серийных агрегатов.

Продолжение приложения Б Размеры в мм

Типоразмер	L	1	1,	l_2	a	a_1	b	b ₁	В	B_1	B_2	Н	H_1
насоса		-	-1	-2	•	 1				21	22		
1K8/18	466	120	115	91	195	140±0,7Z	160	130±0,7Z	230	135	75	240	120
1K20/30	400	120	113	91	193	14010,72	100	130±0,72	275	163	98	270	120
K45/30	580	150	140	90	260	200±0,7Z	200	160±0,7Z	300	175	105	300	150

Типоразмер	d	d_1	D	D_0	D_1	D_2	D_3	D_4	D_5	D_6	Macca,
насоса		1		0	•	2	3	•	7	O	КГ
1K8/18	25	14	140	50	110	90	32	70	90	120	30
1K20/30			160	65	130	100	40	80	100	130	33,5
K45/30	24	18	185	80	150	128	50	90	110	140	53

Продолжение приложения Б

	Двигатель										Размо	еры в	MM.								
Типо- размер агрегата	Типоразмер	Мощ- ность, кВт	Частота враще- ния с ⁻¹ (об/мин)	Напря- жение, В	L	L_1	1	11	12	A	\mathbf{A}_1	A_2	В	\mathbf{B}_1	B_2	B ₃	B_4	Н	h	h_1	h ₂
1K8/18 1K8/18a	5A80MA2 A80A2 AИР80A2	1,5			785 790 790	525			109	240	240	336	230	296	312	75	135	323 330 328	203	120	83
1К20/30м	АИР100L2 A100L2	5,5			865 915	580				250	250	379		300	300			343 370			
1K20/30	АИР100S2 A100S2	4,0			835 870	555	120	185	102	250	250	365		300	300			2.42	193		73
1K20/30a	АИР90L2 A90L2	3,0			810 845	560						355	275	290	290	98	163	343			
1К20/30б	АИР80В2 A80В2 5A80МВ2	2,2	50	220,	815 810 810	525			109	240	240	336		296	312			353	203		83
K45/30	АИР112M2 5AM112M2 A112M2 AИРM112M2	7,5	(3000)	380	1035 1085 1100 1040 690	90				225	225		300	260	300			415 425 455 428	255	150	105
K45/30a	АИР100L2 A100L2	5,5			995 1025	660	150	200	100			450	290 285			105	175	405			
K45/30*	АИР112М2 5АМ112М2 A112М2 AИРМ112М2	7,5			1035 1085 1100 1040	690	130	200	100	250	290-320	430	300	360	360	105	1/3	375 385 415 388	215		65
K45/30a*	АИР100L2 A100L2	5,5			995 1025	665					2		290 285					365 395			

Продолжение приложения Б

Типо- размер	Типоразмер двигателя					Размеры в мм					Масса, кг				
агрегата		d_1	D	D_0	D_1	D_2	D_3	D_4	D_5	D_6					
1100/10	5A80MA2										64				
1K8/18 1K8/18a	A80A2		140	50	110	90	32	70	90	120	59				
1K0/10a	АИР80А2										59				
1К20/30м	АИР100L2										84				
1K20/30M	A100L2										75				
1K20/30	АИР100S2	14									76,5				
1K20/30	A100S2	11									69				
1K20/30a	AИP90L2			160	65	130	100	40	80	100	130	72			
11(20/30a	A90L2										67				
	АИР80В2										64				
1К20/30б	A80B2										64				
	5A80MB2										66				
	АИР112М2		I	I	I										122
K45/30	5AM112M2										139				
	A112M2										152				
	АИРМ112М2										131				
K45/30a	АИР100L2 A100L2										114 111				
	АИР112M2	18	185	80	150	128	50	90	110	140	123				
	5AM112M2										140				
K45/30*	A112M2										153				
	АИРМ112М2										132				
	АИР100L2										113				
K45/30a*	A100L2										110				

^{*} Исполнение по требованию заказчика

Продолжение приложения Б

Схема строповки насосов

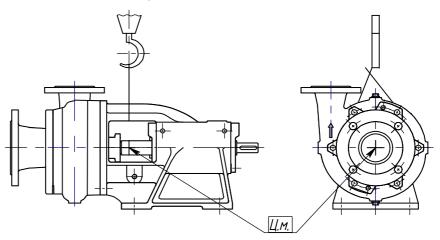
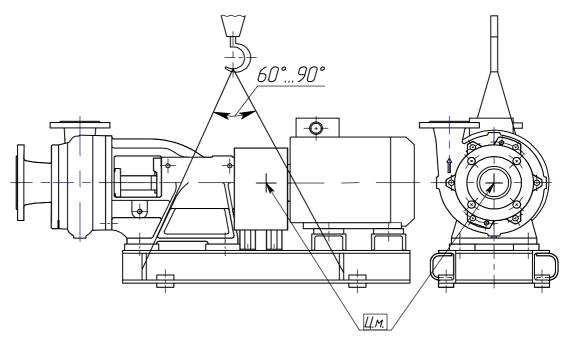



Схема строповки агрегатов

